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ABSTRACT

Several reports indicate that nonparametric bootstrap confidence intervals (CIs) produced by the percentile
method can yield overly liberal Type I error rates in small samples. when the nominal a level is .05 or less. In the
Monte Carlo simu~ations described here, percentile-method bootstrap 95% CIs for p produced higher Type I error
rates than standard parametric CIs in Gaussian and exponential samples of 40 or fewer observations,
Iterated-bootstrap CIs for pi, however, yielded Type I error rates near a • .05 in Gaussian and exponential samples
of as few as 10 observations. In exponential samples of 10 or more observations, iterated-bootstrap intervals
controlled Type I errors more reliably than parametric intervals and were not obviously inferior to the parametric
intervals when the data were Gaussian. Thus, ordinary percentile-method bootstrap CIs for p may be of
questionable accuracy when Type I error rates are to be controlled at values of oL < .05 or so, On the other hand,
iterated-bootstrap CIs may be preferable to parametric CIs for data that come from a skewed distribution, such as
the exponential, provided n is 10 or more. In samples of about 10 observations or more, iterated C Is may yizld
better Type I error control than parametric CIs when the data are skewed and nearly the same Type I error control
when the data are Gaussian.
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INTRODUCTION

Efron's bootstrap is a nonparametric technique for estimating variation in a statistic (Efron, 1979, 1982,
1988; Efron and Ti'shirani, 1991). The method involves repeatedly drawing subsamples from an original data set.
The statistic of interest is calculated in each subsample, and the frequency distribution of its values is taken as an
approximation to the statistic's actual sampling distribution. The bootstrap is noted for generality and a remarkable
ability to extract information from samples (Efron, 1982). Several investigators have noted, however, that standard
bootstrap confidence intervals (Cls) for the correlation coefficient yield overly liberal Type I error rates in small
samples when oL is set to .05 or less (e.g., Efron, 1982; Rasmussen, 1987, 1988; Strube, 1988). This bias may
derive from a tendency of the bootstrap to produce too few subsamples with extreme values of the statistic under
examination (Young & Daniels, 1990). Indeed, Efron (1988) has observed that, although the bootstrap performs
well with oL set to .10, nonparametric bootstrap CIs perform better when "not pushed too far toward extreme
coverage probabilities" (p. 295). However, in psychology, and many other areas of science, it is conventional to set
Type I error rates to .05 or less.

Bootstrap resampling is performed by randomly drawing observations from an empirical data set.
Observations are drawn with replacement and in such a way that each item in the original data set has an equal
probability of entering a subsample. By convention, the number of observations drawn for each subsample, n, is
usually set equal to the number of observations in the original sample, The number of bootstrap subsamples drawn,
N, varies with the problem. Nonparametric bootstrap Cls are typically based on 500-2,000 subsamples; Efron
(1988) suggests using a minimum of 1,000 subsamples.

A nonparametric, "percentile-method" bootstrap CI for an arbitrary statistic, 0, is generated by drawing N
bootstrap subsamples, calculating the statistic's sample estimate, 9, in each subsample, finding the 100x/2 and
100(1 - x/2) percentiles of the frequency distribution of the values of 0 thus produced, and taking the interval
between these points as the range of a 100(1 - oL)% CI. In this way, the percentile method "automatically"
determines a set of approximate confidence limits associated with a given probability of Type I error. The
percentile method does not require the assumption that the data follow any specific probability distribution. Its
validity does, however, depcnd on the validity of assuming that distributions of bootstrap subsamples tend to reflect
the forms of actual sampling distributions. The results of Rasmussen (1987, 1988) and Strube (1988) suggest that
this assumption may sometimes be invalid when n is small and the desired cc is .05 or less.

Several approaches to correcting the percentile method's bias have been proposed. The bias-corrected
percentile method (Efron, 1982) yields CIs with better coverage properties than those of ordinary percentile-method
CIs. However, the bias-corrected percentile method reintroduces parametric (Gaussian) assumptions. Furthermore,
Monte Carlo studies have shown that the corrections it produces may be too small when n is small and Lx is set to
.05 (two-tailed) or less (Strube, 1988). Another correction, the accelerated bias-corrected percentile method is
evidently quite accurate in some sit'iations (Efron, 1987). However, the accelerated bias-corrected method requires
calculating an analytic correction factor that can be difficult or impossible to derive (Loh & Wu, 1987). For this
reason, the accelerated bias-corrected method may be of questionable t, .. in routine data analyses conducted by
nonspecialists.

The iterated bootstrap is a computationally intensive method of correcting the bootstrap's bias (Beran,
1987; Hall, 1986; Hall & Marti&, 1988; Martin, 1990). Like the ordinary percentile-method boostinp (and unlike
the bias-corrected and accelerated bias-corrected methods) the iterated percentile-method bootstrap sets confidence
limits automatically and requires no specific parametric assumptions. An iterated-bootstrap 95% Cl for the mean
can be calculated by first drawing N first-order bootstrap subsamples from an empirical sample. One then draws Xi
bootstrap subsaniples from each first-order subsample. This yields N sets of m second-order subsamples. The
second-order subsamples drawn from each first-order subsample are used to calculate an ordinary percentile-method
CI for p. This produces N second-order, percentile-method CIs. The widths of the second-order CIs are then



calibrated by adjusting their lower and upper cutoff percentages until values are found that cause 95% of the
intervals to cover the sample mean, The empirically corrected cutoff percentages thus obtained are then substituted
for 100oW/2 and 100(1 - o./2)% in an ordinary percentile-method CI derived from the means of the first-order
subsamples. The process of replacing the nominal cutoff percentages with the empirical percentages comprises the
correction for the bootstrap's bias.

The Monte Carlo studies described in the following sections were carried out to examine the Type I error
rates of iterated-bootstrap CIs for the mean in small samples from a decidedly nonGaussian population, the
exponential. A CI for the mean expresses the precision with which a measurement has been obtained, and can be
used to test hypotheses about the location of p. For example, a two-sided, 100(1 - (x)% CI for p that fails to oover 0
can be used to justify rejecting the null hypothesis that p = 0 with significance c.. Hence, the results described here
are relevant to one-sample hypothesis tests, such as tests of differences between correlated observations and single-
degree-of-freedom orthogonal polynomial contrasts. Exponential samples were chosen for examination because
they can be generated fairly rapidly (a consideration in Monte Carlo studies of iterated bootstrapping) and because
they represent a nearly worst-case scendario of sampling from a skewed distribution. Although psychological data
that precisely follow an exponential distribution are probably rare, many types of data tend to exhibit the positively
skewed form of the exponential (or a mirror image therof, particularly when floor or ceiling effects operate.
Examples include accuracies on easy tests, error counts in reaction-time studies, answers on some rating scales and
symptom questionnaires, and lapse probabilities during minor sleep deprivation.

METHODS

The simulations described here were written in Fortran-77 and run on an Intel 860 reduced instruction set
computer installed in a desktop PC. Three types of Cis were examined; Gaussian-theory (Student's t), percentile-
method bootstrap, and iterated percentile-method bootstrap. Random samples of data were drawn from two
distributions, one Gaussian and one exponential. Gaussian samples were generated by randomly drawing values
from a normal distribution with p = 0 and a = 1. Exponential samples were generated by drawing values from an
exponential distribution with p = = I1. Gaussian variables were generated by the direct method-, exponential
variables were generated by the inverse method (Zelen & Severo, 1970).

Gaussian-theory aad percentile-method Cis were examined in Gaussian and exponentially distributed
samples with sizes of 5, 10, 20, 40, 80, and 160. Iterated-bootstrap Cis were examined in Gaussian and
exponentially distributed samples with sizes of 5, 10, 15, 20, and 25. One thousand confidence intervals were
created in each experimental condition defined by a combination of CI type, probability distribution, and sample
size. The observed Type I error rate in each experim;intal condition was calculated as the proportion o' CIs that
failed to cover p.

Gaussian-theory CIs were calculated as 7± t(,. where ,_was the sample mean, t0 ..t 2) the critical
value of Student's t corresponding to I - o./2 = .975 with n - I degrees of freedom, and s, the sample estimate of the
standard error of the mean. Percentile-method CIs were calculated by drawing N = 1,000 bootstrap subsamples
from an empirical sample, calculating the means of the subsamples, sorting the N means, and taking 25th- and
975th-largest values as the lOOw/2% and 100(l - W./2)% limits of a 95% CI, respectively.

An iterated-bootstrap CI was calculated by drawing N = 1,000 first order bootstrap subsamples from an
empirical sample, drawing = 1,000 second order bootstrap samples from each first-order sample, and calculating
the means of the second-order samples. The N = 1,000 cumulative frequency distributions of second-order
subsample means produced by this method were searched for the percentile that exceeded the sample mean in 2 5%
of the distributions of second-order means. A similar search was performed for the percentile that exceeded the
sample mean in 97.5% of the distributions of second-order means. An ordinary percentile-method CI was then
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constructed from the means of the first-order subsamples afteir replacing the standard 100o./2 and I00( I - oL/2)
percentage points with the corrected percentage points obtained from the search through the second-order means.

RESULTS AND DISCUSSION

Figure I illustrates the performance of the Gaussian-theory and percentile-method CIs in Gaussian
samples. The Type I error rates of the Student's 1-based intervals are near the nominal aL level of .05 at all sample
sizes. In contrast, the Type I error rates of the percentile-method intervals are much higher than 05 in small
samples, averaging about. 153 whenj n - 5 and not closely approaching .05 until n reaches about 40 In samples of
about 40 or more observations, the percentile-method bootstrap works fairly well. In small samples, however, the
percentile method , ield! confidence limits that are too narrow, thus yielding large numbers of Type I errors
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Figure 2 illustrates the performance of the Gaussian and percentile-method bootstrap intervals in samples
drawn from the exponential distribution. Both types of intervals produce Type I errors at rates much higher than
.05 in samples smaller than 20 Interestingly, the parametric intervals are less biased than the nonparametric
intervals. Neither interval, however, performs especially well in exponential samples of the sizes examined here

Figure 3 illustrates the performancer of the iterated-bootstrap intervals in samphws from Gaussian and
exponential distributions. In samples of five observations, the iterated-bootstrap's Type I error rate is still ven
high, averaging about. 138 in the Gaussian samples and about 134 in the exponential samples In samples o.
size 10, however, the iterated-bootstrap's Yype I error rate is near the nominal level of c = 05 in (aussian samples
and only slightly higher in exponential samples (averaging about 058 in the cxponential data) In samples of 15 or
more observations, the iterated bootstrap's observed Type I error rate is within sampling error of ci 05 in both



Gaussian and exponential samples. (By the normal approximation to the binomial, the standard error of the
estimate of oa .05 in samples of 1,000 should be roughly [(a)(1 - a)/1000]1' 2 -. 007,)
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SUMMARY

None of the methods yielded Type I error rates near a = .05 in samples of five observations drawn from an
exponential distribution. Iterated-bootstrap intervals produced liberal Type I error rates in samples of fewer than
about 10 observations. Student's t-based CIs were seriously biased in samples of 20 or fewer observations.
Ordinary percentile-method bootstrap CIs were more biased than the Student's t-based CIs in samples this small.

Except in the smallest samples (n = 5), the iteiated-bootstrap intervals yielded Type I error rates in
Gaussian data that were indistinguishable from those of the Gaussian-theory intervals. Considering the fact that the
t-based CIs are theoretically optimal when the data are Gaussian, this performance seems remarkable for a
nonparametric technique. The failure of the iterated bootstrap in the n = 5 condition is disappointing but
unsurprising given the uncertaintieg involved in reconstructing the sampling distribution of the mean from so few
observations.

An iterated bootstrap consumes substantially more computer time than the ordinary bootstrap, which is
itself coniputationally demanding, When NV and MV are set to 1,000, for example, an iterated bootstrap requires
drawing NM =- 1,000,000 subsamples, calculating 1,001,001 values of the statistic of interest, and sorting 1,001
arrays of 1,000 means. Some additional time is spent searching the arrays of second-order means for the adjusted
percentile cutoffs. Calculations of this magnitude take time but are within the capabilities of reasonably fast
desktop computers. A problem with n = 15 and N =- - 1,000, for example, might require about 6 min in
efficiently coded Fortran on a 20-MHz 386-based machine with a math coprocessir.

RECOMMENDATIONS

I. Ordinary percentile-method bootstrap CIs for A may be of questionable value when Type I error rates are to be
cornrolled at values as low as .05, This is because, when cc • .05, percentile -method CIs may perform less well than
parametric CIs in small samples and no better than parametric CIs in large samples.

2. When it is possible that data may have been drawn from a skewed distribution, like the exponential,
iterated-bootstrap CIs may be preferable to parametric CIs if n is about 10 or more. Under these conditions, iterated
CIs may yield better levels of Type I error contr'ol than parametric CIs when the data are skewed, and approximately
the same level of Type I error control when the data are drawn from a Gaussian distribution.
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